

PVT-Index and **Neta-Index built** from qFibrosis Demonstrated Potential as Prognostic Estimation Models

Using qFibrosis analysis to predict disease and survival outcome of patients with hepatocellular carcinoma after curative treatment

Introduction

- In liver cancer, there is a lack of studies addressing the prognosis value of the stromal background and fibrosis features (i.e., stromal remodelling in tumor microenvironment, collagen realignment in the stromal compartment, collagen fibers and basal membrane) where they play an important role in cancer progression.
- qFibrosis system [1], with SHG/TPEF imaging technology, can identify, quantify and visualize the fibrosis features from biopsies. Well validated on its application in diagnosis and prognosis of Hepatitis B (HBV) and Non-alcoholic Steatohepatitis (NASH).

Aim

In this study, we aim to establish a prognostic estimation model by using qFibrosis analysis in liver cancer.

Method

- Included 198 patients with HCC and underwent curative tumor resection.
- Analyzed the patients' disease status, survival time, and clinical outcomes of whether portal vein thrombosis (PVT) and metastasis (Meta) developed during follow-up after
- Imaged patients' liver tissue and liver tumor using stain-free Genesis[®]200 multiphoton imaging system [2] and assessed using qFibrosis system, and after which 33 + 156 collagen parameters were generated from liver tissue and tumor part, respectively. • Built two models – PVT -index and Meta-index – to differentiate the patient's clinical outcome of developing PVT and metastasis. The models are validated using leave-
- one-out method.

Results

- Both developing PVT and metastasis were significant indicators for poor prognosis.
- 7 parameters are selected from the parameters of liver tissue and tumor part to build the PVT-index and Meta-index and are shown in Table 1.

Table 1

Model	Parameter No.	Part	Parameter Name	
PVT- index	1	tumour	%Agg	Percentage of aggregat
	2	tumour	#ShortStr	Number of short s
	3	tumour	norm #ThinStr	Number of thin strings for overall
	4	tumour	norm StrWidth	Width of all strings for overall
	5	nontumour	ratio #ThickStr/#ThinStr	Ratio of number of thick string
	6	nontumour	#ShortStrPTDis	Number of short and distri
	7	nontumour	#ShortStrZone2Agg	Number of short and agg
Meta- index	1	tumour	norm #ThickStr	Number of thick strings for overa
	2	nontumour	#ThinStrPT	Number of thin strings
	3	nontumour	#ThinStrPTDis	Number of thin and distrib
	4	nontumour	StrAreaPeriCentralDis	Area of distributed f
	5	nontumour	StrWidthCV	Width of all stri
	6	nontumour	#ThickStrCVDis	Number of thick and d
	7	nontumour	#IntersectionCV	Number of intersections of al

Chih-Yang Hsiao^{1,2}, Dean C.S. Tai³, Yayun Ren³, Kai-Wen Huang^{1,2,4}

¹ Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Rd, Taipei 100, Taiwan ² Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No.1 Jen Ai Rd section 1, Taipei 100 Taiwan ³ HistoIndex Pte Ltd, 79 Ayer Rajah Crescent #04-05 Singapore, 139955 ⁴ Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Rd, Taipei 100, Taiwan

Results continued

0.030 for validation), as shown in Fig. 1a.

Fig. 1a

<u>Fig. 1b</u>

Conclusions

Prognostic models built from the collagen parameters in the qFibrosis system can predict HCC patient's clinical outcomes of developing PVT and Meta during follow-up after radical treatment and show the transformation of the histopathological features into quantifiable data that could be used to correlate with patient outcome as other clinical biomarkers.

Acknowledgements 6

The authors thank the patients, investigators and the study coordinators who participated in this study.

References

2021;13(21):5323.

Contact information

Dr Huang Kai-Wen, email : skywing@ntuh.gov.tw Dr Dean Tai, email : dean.tai@histoindex.com

• The PVT-index well differentiates patients developing PVT (p < 0.001 for training, p =

• Meanwhile, the Meta-index also well differentiates patients developing metastasis during follow-up (p < 0.001 for training, p = 0.024 for validation), as shown in Fig. 1b.

1. Sun Y, Zhou J, Wu X, Chen Y, Piao H, Lu L, *et al.* Scientific Reports. 2018;8(1). 2. Liu I-T, Yen C-S, Wang W-L, Tsai H-W, Chu C-Y, Chang M-Y, et al. Cancers.

Scan to ownload t

