

Digital pathology using stain-free imaging indices allows direct prediction of all-cause mortality, hepatic decompensation, and hepatocellular carcinoma development in patients with non-alcoholic fatty liver disease

Timothy J. Kendall¹, Elaine Chng², Yayun Ren², Dean Tai², Gideon Ho², and Jonathan A. Fallowfield¹

¹Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK; ²HistoIndex, Singapore

Disclosures

 Served as a consultant for, or received speakers' fees from, Resolution Therapeutics, Clinnovate Health, Perspectum Diagnostics, and Incyte Corporation.

Background

- Digital quantification of scarring from either stained liver sections or stain-free imaging reduces observer-related variability in the histological assessment of NAFLD.
- To date, computational methods have mainly provided ordinal scores analogous to those provided by a pathologist as disease outcomes are strongly correlated with stage.
- Direct prediction of outcomes from tissue, without using fibrosis stage as a surrogate, has not been possible due to the absence of suitable event-rich cohort data.

Stain-free imaging

- Stain-free imaging examines architectural features unapparent to human observers.
- SHG microscopy identifies collagen and TPEF microscopy identifies hepatocytes.

ML, machine learning; q-FPs, fibrosis-related parameters

qFibrosis

- ML-based algorithm with SHG/TPEF imaging provides a visual mapping of collagen burden/distribution & permits measurement of quantifiable collagen fibrillar properties.
 - e.g., length, width and area of fibers according to their distribution in the histopathological regions.
- Previous longitudinal study demonstrated the potential prognostic significance of q-FPs where subjects with high q-FPs had increased incidence of liverrelated events.

StrPerimeter: Perimeter of collagen fibres; NoLongStr: number of long collagen fibres

21

=0.0056 131

12

Follow-up duration (years

21

>=3.77 129

12

Follow-up duration (years)

111

- SteatoSITE (<u>https://steatosite.com/</u>) is a resource containing integrated clinical and pathological data from 940 cases across NAFLD spectrum.
- Includes outcome data from electronic health record and pathologist-assigned scores from H&E and PSR-stained sections including NASH-CRN fibrosis.
- A single unstained section was available.

Aims

- To establish individual indices for risk of all-cause mortality, hepatic decompensation and HCC from key fibrotic architectural features identified using stain-free imaging.
- To compare the predictive power of the risk indices established with (i) the stainfree imaging-derived qFibrosis stage (qF0/1/2 v qF3/4) and (ii) with the assigned NASH-CRN fibrosis stage (F0/1/2 v F3/4).

Methods

 Unstained sections from a training set of 294 core biopsies from SteatoSITE were imaged using SHG/TPEF microscopy.

Statistical approach

- Using sequential feature selection, 10, 10 and 5 parameters were chosen out of 184 fibrosis-related parameters and a linear regression method was used to construct individual indices for risk of all-cause mortality, hepatic decompensation and HCC, respectively.
- Time-to-event analysis was performed using the Kaplan–Meier method, with death as a competing risk for decompensation and HCC, and distributions compared using the log-rank test.
- A Cox proportional hazards model was used to estimate hazard ratios.

Results

- qFibrosis has been applied in over a dozen non-cirrhotic and cirrhotic NASH retrospective studies, where correlation with central pathologists' (CRN staging) ranges from 0.57 0.81.
- The correlation of qFibrosis with CRN staging from the current training set of 294 core biopsies is r = 0.82 (p<0.001).

Results: All-cause mortality index

			٩٣	Surviva	9 mie 1						
	1.0 -	Charles and the second	-								
ity	0.8 -	p < 0.0001									
robabil	0.6 -										
Survival p	0.4 -				۲ <u>-</u> ۱		qF stage + f=0/1/2				
	0.2 -						🛨 f= 3 / 4				
	0.0 -	0	2000	4000	6000	8000					
	,		n at viale	Time_days							
	I	Numbe	ratrisk								
f=	:0/1/2	192	164	88	23	0					
f=	= 3 / 4	102	62	20	7	0					

aFibrosis index

NASH-CRN	p value	Hazard ratio	HR 95.0% CI
F3/4 vs F0/1/2	0.000	3.54	2.19-5.73

qFibrosis	p value	Hazard ratio	HR 95.0% CI	
F3/4 vs F0/1/2	0.000	2.70	1.67-4.34	

Results: Hepatic decompensation index

Decompensation index NASH-CRN qFibrosis index Decompensation Decompensation Decompensation 0.8 0.8 0.8 p < 0.0001 p < 0.0001 p < 0.0001 0.6 Cumulative probability 0.6 0.6 Cumulative probability Cumulative probability 0.4 0.4 0.4 NASH-CRN stage qF stage Decomp index + f=0/1/2 + f=0/1/2 0.2 Index<=0.421</p> 0.2 + f= 3/4 0.2 🛨 f= 3 / 4 Index>0.421 0.0 0.0 0.0 2000 4000 6000 8000 Time_days 2000 4000 6000 8000 2000 4000 6000 8000 0 Time_days Time_days Number at risk Number at risk Number at risk Index<=0.421 207 87 23 169 0 f=0/1/2 181 152 81 22 0 f=0/1/2 180 79 22 146 0 Index>0.421 42 0 16 2 f=3/4 68 33 3 0 f=3/4 69 13 15 39 3 0 NASH-CRN HR 95.0% CI qFibrosis HR 95.0% CI p value Hazard ratio p value Hazard ratio Index p value HR 95.0% CI Hazard ratio index>0.421 vs F3/4 vs F0/1/2 F3/4 vs F0/1/2 3.48-10.41 0.000 6.02 0.000 4.63 2.70-7.93 0.000 6.97 4.06-11.95 index<=0.421

Results: HCC index

Summary

- Using liver biopsy material with linked long-term clinical outcome data, we developed tools that directly predict hard endpoints in patients with NAFLD and do not rely on ordinal fibrosis scores as a surrogate.
- These tools have greater predictive value than pathologist-assigned NASH-CRN fibrosis stage or computationally-assigned qFibrosis stage.
- These indices will be validated in an additional NAFLD cohort but may provide direct tissue-to-outcome predictions that aid clinical decision-making, offer more nuanced participant stratification and meaningful endpoints in clinical trials.

Acknowledgements

THE UNIVERSITY of EDINBURGH Institute for Regeneration and Repair

Centre for Inflammation Research

OS-087

Digital pathology using stain-free imaging indices allows direct prediction of all-cause mortality, hepatic decompensation and hepatocellular carcinoma development in patients with non-alcoholic fatty liver disease

Timothy Kendall¹, Dean Tai², Gideon Ho², Yayun Ren², Elaine Chng², Jonathan Fallowfield¹

¹University of Edinburgh, United Kingdom, ²HistoIndex Pte Ltd, Singapore

Email: tim.kendall@ed.ac.uk

Background and Aims:Digital quantification of scarring from either stained liver sections or stain-free imaging reduces observer-related variability in the histological assessment of non-alcoholic fatty liver disease (NAFLD). To date, computational methods have mainly provided ordinal scores analogous to those provided by a pathologist as disease outcomes are strongly correlated with stage. Direct prediction of outcomes from tissue, without using fibrosis stage as a surrogate, has not been possible due to the absence of suitable event-rich cohort data. Using SteatoSITE (https://steatosite.com/), a resource containing integrated clinical and pathological data, we undertook stain-free imaging to generate tools predictive of patient outcomes using architectural features unapparent to human observers.

Method:Unstained sections from a training set of 294 biopsies were imaged using second harmonic generation/two-photon excitation fluorescence microscopy. Using sequential feature selection, 10, 10 and 5 parameters were chosen out of 184 fibrosis parameters and a linear regression method was used to construct individual indices for risk of all-cause mortality, hepatic decompensation and hepatocellular carcinoma (HCC), respectively. Time-to-event analysis was performed using the Kaplan–Meier method, with death as a competing risk for decompensation and HCC, and distributions compared using the log-rank test (Fig. 1). A Cox proportional hazards model was used to estimate hazard ratios (HRs). The predictive power of the risk indices was compared with the assigned NASH-CRN fibrosis stage (F0/1/2 v F3/4) and the stain-free imaging derived qFibrosis stage (qF0/1/2 v qF3/4).

Results:The newly defined "Mortality Index" had greater predictive power for all-cause mortality (index >0.28 vs. </= 0.28, HR 5.33, 95% confidence intervals (CI) 3.00-9.47, p = 0.000) than either NASH-CRN or qFibrosis stage. The "Decompensation Index" had greater predictive power for decompensation events (index >0.421 vs. </=0.421, HR 6.97, 95% CI 4.06-11.95, p = 0.000) than either NASH-CRN stage or qFibrosis stage. Finally, the "HCC Index" had greater predictive power for HCC development (index >0.048 vs. <=0.048, HR 7.50, 95% CI 1.37-41.13, p = 0.020) than either NASH-CRN stage or qFibrosis stage.

Conclusion:Using liver biopsy material with linked long-term clinical outcome data, we developed tools that directly predict hard endpoints in patients with NAFLD and do not rely on ordinal fibrosis scores as a surrogate. These tools have greater predictive value than pathologist-assigned NASH-CRN fibrosis stage or computationally-assigned qFibrosis stage. These indices will be validated in an additional NAFLD cohort but may provide direct tissue-to-outcome predictions that aid clinical decision-making, offer more nuanced participant stratification and meaningful endpoints in clinical trials.

