

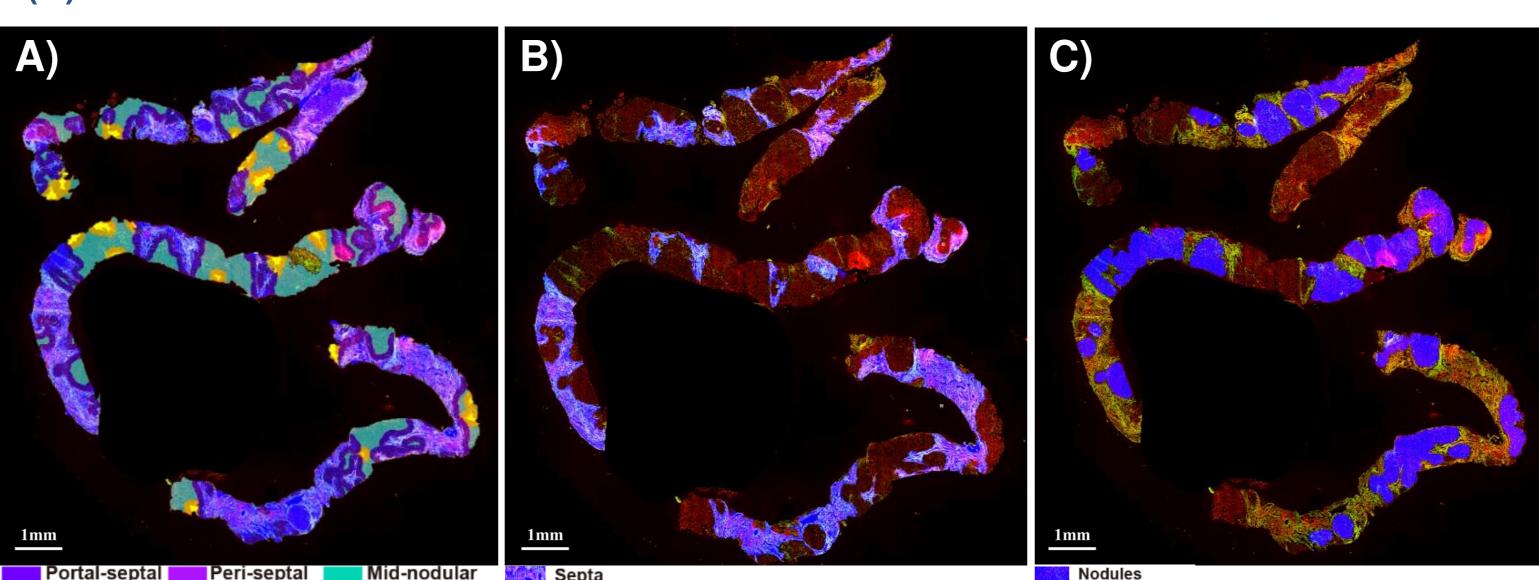
Machine learning histology model in NASH cirrhosis may improve the assessment of key outcome changes

Derivation of machine learning histologic scores correlating with portal pressures and the development of varices in NASH patients with cirrhosis

Introduction

Previous studies from Hepatitis C using semi-quantitative methods have found that considering features including fibrosis area, septal thickness, size and number of nodules can be useful in correlating histology with portal pressure in cirrhotic patients. However, these semi-quantitative techniques are subjective and prone to variabilities.

Aim


- To examine if a machine learning model can accurately predict hepatic venous pressure gradient (HVPG) and presence of varices based on liver histology in NASH cirrhotic patients
- Using second harmonic generation/two-photon excitation fluorescence (SHG/TPEF), a machine learning algorithm was developed based key histologic features in NASH cirrhosis; (a) Fibrosis, (b) Septa, (c) Nodule.

Method

- NASH patients with compensated cirrhosis and HVPG \geq 6 mm Hg (n = 143) were included from the Belapectin phase 2b trial (NCT02462967).
- Liver biopsies, HVPG measurements, and upper endoscopy were performed at baseline (BL) and at end of treatment (EOT).
- SHG/TPEF imaging-based tool provided an automated quantitative assessment of histologic features: 457 histologic variables related to key cirrhosis architectural features: septa, nodules, and fibrosis (SNOF).
- We then combined these features to assess correlation with clinically meaningful changes of HVPG (SNOF-C), i.e., related to HVPG change of >20% or \leq 20%.

Results

Figure 1: SHG/TPE image showing the AI annotations of (A) Fibrosis, (B) Septa and (C) Nodules

Peri-venular Hepatic venule

- The visualization of fibrosis, as well as septa and nodules are shown in Figure 1.
- Using the machine learning model, fibrosis was quantified (1A) in regions specific to cirrhotic samples, including the portal-septa, peri-septal, mid-nodular, peri-venular, and hepatic venule regions; and 18 septa (1B) and 19 nodules (1C) were detected.

Mazen Noureddin,¹ Dean Tai,² Elaine L. K. Chng,² Yayun Ren,² Pol Boudes,³ Harold Shlevin,³ Stephen A. Harrison,⁴ **Guadalupe Garcia-Tsao**,⁵ Zachary Goodman,⁶ and Naga P. Chalasani⁷

¹Division of Digestive and Liver Diseases, Comprehensive Transplant Center, Cedars-Sinai Medical Center,²HistoIndex Pte. Ltd., Singapore, ³Galectin Therapeutics, ⁴Pinnacle Clinical Research, San Antonio, TX, USA, ⁵Section of Digestive Diseases, Yale University and CT-VA Healthcare System Connecticut, USA, ⁶Inova Fairfax Hospital, Falls Church, Virginia, USA, ⁷Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, USA

Results continued

Figure 2: Boxplots showing the training and validation of SNOF-C score on patients with HVPG change of >20% or ≤20% between BL and EOT irrespective of the treatment arm.

- using just septa, or nodule, or fibrosis separately.

Table 1: Performances of SNOF-C in detecting clinically meaningful HVPG changes

	Training					Leave-one-out validation				
	AUC	Sensitivity	Specificity	PPV	NPV	AUC	Sensitivity	Specificity	PPV	NPV
SNOF-C score>0.257 to predict HVPG changes ≤ -20%	0.89	97%	69%	50%	99%	0.79	75%	63%	40%	89%

Conclusions

- septa and nodules in NASH cirrhotic patients.
- natural history of NASH cirrhosis and treatment response.

Acknowledgements

The authors thank the patients who participated in this study, as well as the investigators and the study coordinators.

References

Chalasani N., et al. Gastroenterology 2020;158:1334-1345.

Contact information

Mazen Noureddin: Mazen.Noureddin@cshs.org

Cedars Singi Cedars Galectin

Scan to

THE INTERNATION LIVER CONGRESS

FRI--516

ILC2022

• A machine learning score, SNOF-Change (SNOF-C) score was built based on the top 15 significant morphological parameters that correlated with 20% changes in HVPG.

• We found that the combination of septa, nodules and fibrosis (SNOF) in an index outperforms

• The SNOF-C score performed well in differentiating those who had >20% change in HVPG versus those who did not, with AUROC of 0.89 in the training cohort and 0.79 in the validation cohort.

• Limitation of the study includes the variability of HVPG measurements in NASH cirrhosis although the HVPG measurements were conducted according to a rigorous protocol, and clinical events did not occur often enough in our study to be correlated with the machine learning model.

• Incorporating septa and nodules detection into machine learning algorithms can accurately detect

• This can be used to develop more sophisticated algorithms to correlate with HVPG and study the

